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Abstract 

Trust in automation was a critical factor in human-machine collaboration, particularly in high-
stakes environments where automated systems must perform reliably under pressure. While 
Lee and See’s (2004) model of dynamic trust has served as a foundational framework for 
understanding how trust evolves, research over the past two decades has identified additional 
factors that shape trust calibration between human operators and automation. This integrative 
review synthesizes empirical findings to refine the trust model, incorporating individual 
differences in attention control, pre-existing attitudes, task interdependence, perceived risk, 
automation reliability, transparency, and the physical characteristics of robotic systems. Notably, 
trust is an attitude, distinct from dependence, which is a behavior that determines whether 
automation is actually used. As automation expands into military operations, ensuring 
appropriate reliance, rather than simply fostering trust, becomes paramount. Future research 
must shift towards experimental methodologies with greater ecological validity, capturing 
decision-making in dynamic environments. These findings will inform the development of robotic 
teammates that align with operators’ cognitive needs and integrate into mission execution. By 
optimizing system design and human-machine interaction strategies, the military can field 
automation that enhances operational effectiveness, ensuring that robotic systems are not just 
trusted, but actively depended upon in combat. 
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An Integrative Review of Trust in Automation 

State of Art 

Integrating the Trust Literature 

In 2004, Lee and See published their dynamic theory of trust in automation based on the 
human-human trust literature.  They identified the contextual drivers that fed into individuals’ 
initial beliefs, how individuals formed their intention to use the automation, and specific 
characteristics of that automation.  They showed that a person’s trust in automation was 
dynamic and continuously calibrated based on contextual factors (Lee & See, 2004).  In the 21 
years since that publication, empirical research has grown and robotic capabilities have 
exploded.  During that time, the same trust model - shown in Figure 1 - has maintained its 
prominence within the human factors field and its influence is shown throughout the studies 
highlighted in this review.  However, human factors and social robotics have refined their 
research and discovered new insights into human-automation teaming.  The research on 
automation reliability, anthropomorphism, and task interdependence have demonstrated their 
importance, and these trust drivers should be included in future trust calibration models.  A full 
review of trust in automation is outside the scope of this paper, but this integrated review 
demonstrates that these concepts should be explicitly captured under Reliance Action, 
Automation, and Display. Based on the research, I have provided an updated trust model with 
these drivers - seen in Figure 4 - and briefly outlined a future direction as we seek to further 
understand the relationship between trust (an attitude) and dependence (a behavior) on 
automation. 

Automation on the Battlefield 

Over the years, robotic systems have played significant roles for U.S. military forces. As 
the Army shifts focus toward Large Scale Combat Operations against near-peer threats, 
modernization efforts are intensifying. The Army is equipping its ground combat formations with 
robotic teammates designed to enhance mission execution. These systems amplify soldier 
capabilities and improve survivability (Endsley, 2015; Szegedi et al., 2017). The Department of 
Defense (2023) emphasized that integrating these technologies is essential for maintaining 
battlefield advantage.  The Army has already fielded semi-autonomous robots capable of 
receiving tactical tasks and maneuvering across complex terrain.  These robotic systems 
introduce unique capabilities intended to support soldiers on the ground such as: 
reconnaissance, bomb disposal, communication relays, or facilitating resupply to units on the 
front line (Young & Winstead, 2025). Army units will deploy these robotic enablers as essential 
teammates to boost performance and effectiveness. Given their pivotal role in future missions, it 
is essential to examine the factors influencing the trust and dependence of human soldiers on 
these robot teammates. 

For soldiers to trust robotic teammates, they must first understand the robots’ roles and 
responsibilities, engage with them confidently, and properly rely on them in combat. While 
fielding advanced automation promises operational gains, trust is not guaranteed. Soldiers must 
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believe that robotic systems will perform reliably under pressure, make sound decisions, and 
enhance—not hinder—mission outcomes. Without this trust, operators may hesitate, second-
guess automation decisions, or override system recommendations, diminishing the advantages 
these technologies offer.  Developing robotic teammates that earn and maintain soldiers’ trust is 
essential for achieving the Army’s modernization objectives and ensuring dominance on the 
future battlefield.  Automation research has explored the impacts of attitudes towards robots, 
task interdependence, reliability, transparency, and anthropomorphism impact a person’s trust.  
This research has impacted, and will continue to impact, how the right tools get into soldiers’ 
hands.    

Theories of Trust in Automation 

Lee and See’s Conceptual Model of Trust in Automation 

Lee and See (2004) offered a framework explaining how trust shapes human reliance on 
automation tools. Their model emphasized that trust would guide future actions, particularly 
when automation became too complex. They identified drivers that impacted throughout the 
entire process, from previously held belief up to reliance on the automation, and demonstrated 
how feedback from these drivers impact trust throughout (see Figure 1 below).  

 

Figure 1. A conceptual model of the dynamic process that governs trust, taken from Lee and 
See (2004).  Trust developed through a sequential process, beginning with information 
assimilation and belief formation, where users integrated prior knowledge to assess system 
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reliability. As they interacted with automation, trust evolved based on factors like workload and 
perceived risk. Users then determined whether to rely on automation before ultimately 
experiencing its actual or perceived reliability. Throughout, feedback loops shaped trust through 
ongoing interactions. 

This model has been applied across multiple domains, as it applied to any situation that 
relied upon human-automation interaction.  Their findings demonstrated that over-trust or under-
trust often results from miscalibration rather than simple system performance (Hoff & Bashir, 
2015).  Within aviation, pilots’ trust was highly susceptible to reliability fluctuations and minor 
errors caused a disproportionate loss of trust (Merritt et al., 2015).  This aligned with Lee and 
See’s (2004) proposition that trust was sensitive to deviations from expected performance in 
high perceived risk scenarios, reinforcing the need for automation to be both reliable and 
predictable to sustain trust over time.  Similarly, medical providers’ initial trust of decision-
support systems was often influenced by external factors such as authority endorsements, but 
long-term trust was contingent on consistent and interpretable system performance (Dzindolet 
et al., 2003).  The trust model explained these findings through the progression from Information 
Assimilation to Automation (as seen in Figure 1) and the feedback loops after using the 
automation (Lee & See, 2004).   

Overall, the dynamic theory of trust proposed by Lee and See (2004) proved to be a 
valuable framework for understanding trust in various domains.  Its emphasis on trust 
calibration, and the influence of feedback mechanisms made it particularly well-suited for 
applications in human-automation teaming, and decision-making under uncertainty.  This model 
has remained the primary model to understand trust in automation because of its holistic 
approach towards the human and the automation.   

Situational Trust  

Situational trust is fluid, adapting to changes in operations, environment, and automation 
behavior. Hoff and Bashir’s (2015) created a trust framework consisting of dispositional, 
situational, and learned trust.  People’s dispositional trust remained relatively stable and was 
based on an individual's general propensity to trust automation.  Whereas situational trust 
fluctuated in response to contextual factors such as workload, perceived risk, task complexity, 
and system transparency. Situational trust was highly sensitive to these contextual cues, 
requiring rapid recalibration. Situational trust played a pivotal role by governing real-time 
human-automation interactions. The adaptive nature of situational trust meant that robotic 
teammates needed to dynamically adjust transparency levels and communication strategies to 
align with their human counterparts requirements (Hoff & Bashir, 2015). 

In high-risk military environments, operators continually monitored automation 
performance, especially under elevated workloads where trust became a critical factor (Sato et 
al., 2020). Their research revealed that participants exhibited greater trust in automation when 
workload and operational risks were significant.  This indicated that under pressure, operators 
were more willing to rely on automation. However, this reliance was conditional; people were 
influenced by factors such as historical system performance, real-time behavior, and 
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transparent decision-making processes. Together, these factors underscored that situational 
trust was a strategic calibration process in which operators balanced perceived automation 
benefits against operational risks. 

  A person’s perceived risk plays a significant role in how people calibrate their situational 
trust with an automation support tool.  Research showed that under high-risk conditions, people 
tended to verify automation outputs, even when their cognitive resources were stretched. 
Bhaskara et al. (2021) found that participants, despite being engaged in reconnaissance tasks, 
took the time to verify which unmanned reconnaissance vehicle (UV) to deploy—an effort that 
required completing a tedious mathematical calculation. This verification occurred even though 
their attention was needed elsewhere, primarily due to the potential financial penalty if the AI-
selected UV was incorrect. In high-stakes scenarios where errors carried significant 
consequences, individuals instinctively engaged in more rigorous verification processes, 
highlighting the need for explainable automation outputs. These findings aligned with Lee and 
See’s (2004) concept of trust appropriateness, which emphasized that trust should be calibrated 
to match an automation system’s capabilities relative to the risks involved. 

 Task interdependence played a critical role in shaping situational trust, particularly in 
environments requiring close collaboration between humans and automation. When tasks were 
highly interdependent, automation that performed reliably helped reduce operator stress and 
fostered greater trust (Zhao et al., 2020). Repeated success reinforced confidence in the 
system, making users more willing to rely on automation for decision-making. The role of 
explainable communication became even more vital in these scenarios, ensuring that operators 
understood how and why automation reached its conclusions (Verhagen et al., 2021). Without 
this clarity, even a reliable system risked eroding trust over time. Additionally, research indicated 
that in high-interdependence tasks, people perceived robotic teammates as true collaborators 
rather than mere tools, which strengthened overall team cohesion and trust (O’Neill et al., 
2022). 

 Collectively, these insights illustrated that situational trust in military automation was a 
multifaceted construct influenced by workload, risk perception, transparency, emotional 
expressiveness, and task interdependence. Therefore, automation systems that adjust 
transparency and decision-support levels in real-time are better positioned to sustain 
appropriate trust levels.  By leveraging adaptive transparency mechanisms, and designing 
automation systems that support high levels of interdependence, military organizations can 
create great robotic teammates capable of fighting on any battlefield.  Such efforts will ensure 
that our military forces are best positioned to fight and win in a complex world.  

Information Assimilation and Belief Formation 

  Based on Lee and See (2004), users formed trust in automation by drawing on prior 
knowledge and observations to shape their expectations. This process relied on a mix of 
analytical reasoning, pattern recognition, and emotional responses to system behavior. Trust 
developed gradually, influenced by the clarity and consistency of the system’s performance and 
the way it communicated reliability. When automation behaved predictably and conveyed useful 
feedback, users became more confident in its capabilities over time. On the other hand, 
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inconsistent or unexpected performance made them more cautious and less likely to rely on the 
system over time (Lee & See, 2004).   

 The aforementioned trust model did not discuss individual differences between users 
and how those differences impact their trust in different automation tools.  For example, 
attention control capabilities impacted people’s initial trust and propensity to use different levels 
of automation (Rovira et al., 2017); additionally, the explicit and implicit attitudes people held 
towards robots shaped trust  (Spatola & Wudarczyk, 2021).  These attitudes, whether 
consciously held (explicit) or subconsciously formed (implicit), influenced how operators 
perceive, engage with, and ultimately depend on automated systems (Elsbach & Stigliani, 2019; 
Han et al., 2020). Within Lee and See’s (2004) model, people’s individual differences and 
attitudes would be classified as an organizational or environmental context that fed into the 
Information Assimilation and Belief Formation box (see Figure 4). 

Individual Differences 

 Working memory has been widely studied in the context of predicting performance and 
trust in automation.  Working memory (WM) referred to a person’s ability to temporarily store 
and manipulate information while engaged in cognitive tasks (Baddeley, 2000).  It played a 
critical role in decision-making, particularly when individuals evaluated automation that provided 
both accurate and erroneous recommendations.  People with higher WM capacity performed 
better in automation-assisted tasks because they effectively processed and verified information, 
even when the automation failed (Rovira et al., 2017).  Conversely, individuals with lower WM 
capacity relied more heavily on automation, even when it was incorrect, leading to performance 
decrements (de Visser et al., 2010).  For example, in a simulated military targeting task, people 
with lower WM struggled identifying errors in an automated targeting system, whereas those 
with a higher WM were better able to detect automation failures and adjust their decisions 
accordingly (Rovira et al., 2017). 
 While working memory has traditionally been used to predict performance in human 
factors research, and specifically automation, it was distinct from attention control.  Working 
memory involved both the storage and manipulation of information (Baddeley, 2000), while 
attention control referred to a person’s ability to regulate cognitive resources and maintain their 
focus on task-relevant information (Pak et al., 2023).  A key issue with working memory as a 
predictor was that many measures conflate memory storage with attention control - this made it 
difficult to determine which cognitive process drove performance differences (Shipstead et al., 
2014).  As such, WM tasks often fail to isolate the executive attention component, which 
resulted in ambiguity while interpreting results. 
 Attention control emerged as a stronger predictor of performance in complex task 
environments (Durso et al., 2006; Chen & Barnes, 2012).  Attention control facilitated goal-
directed behavior by allowing people to maintain focus on relevant information while effectively 
disengaging from distractions (Engle, 2002).  Unlike working memory, which was marred by its 
confounds, attention control measures have demonstrated more predictive power in multi-
tasking and automation related tasks (Pak et al., 2023).  For example, in an air traffic control 
simulation, WM capacity did not predict performance, but attention control measures explained 
the variance in task success, suggesting that the ability to maintain focus was more critical that 
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raw capacity (Durso et al., 2006).  Additionally, when people were forced to multitask, 
attentional control measures - rather than WM capacity - were the best predictors of an 
operators ability to manage multiple robotic systems in a high workload environment (Chen & 
Barnes, 2012).  Additionally, attention control has been less susceptible to adverse impacts 
because attention control assessments relied on fundamental cognitive processes, such as the 
ability to regulate focus and resist distractions rather than acquired knowledge (Burgoyne et al., 
2021).  These findings suggested that attention control provided a more precise explanation of 
individual differences in performance, particularly in high workload or distracting environments.  

Explicit Attitudes 

Explicit attitudes represented conscious beliefs and evaluations about robots, including 
perceptions of their competence, reliability, and usefulness. Traditionally, individual attitudes 
towards robots have been investigated via explicit self-reports.  Previous research has 
emphasized the notion of a strong link between people’s previous knowledge about robots and 
associated robotic acceptance (Arras & Cerqui, 2003).  When human operators believed a 
robotic system was highly capable, they reported higher levels of trust and reliance (Young et 
al., 2009). However, this sometimes led to over-dependence when the system did not perform 
as expected. On the other hand, negative explicit attitudes, such as skepticism toward a robot’s 
decision-making abilities, often resulted in under-dependence, with operators underutilizing 
automation even when it performed reliably.  

Anthropomorphic design features played a significant role in shaping people’s attitudes.  
Robots with human-like characteristics tended to evoke positive explicit attitudes regarding 
competence and reliability. However, when these anthropomorphic features did not match a 
robot’s functional capabilities, they often led to misplaced trust and over-dependence, 
particularly among operators with positive implicit biases toward human-like machines (Haring 
et al., 2021). These beliefs have been shaped by training, past experiences, and organizational 
culture, highlighting the need for educational interventions that accurately convey automation 
capabilities and limitations (Young et al., 2009; Zlotowski et al., 2018). 

Implicit Attitudes 

Implicit attitudes, by contrast, operate at a subconscious level. They are shaped by 
unconscious biases that affect split-second decisions in high-pressure situations. De Houwer et 
al. (2009) argued that implicit attitudes formed automatically and could be measured using 
techniques like implicit association tests (IATs). Research indicated that these implicit biases, 
which are less susceptible to deliberate self-perceptions, can be used to evaluate novel objects 
(Cunningham et al., 2004; de Graaf et al., 2016).  These implicit biases—whether positive or 
negative—significantly impacted trust calibration and reliance decisions, especially under time 
constraints. For example, Cunningham et al. (2004) found that the amygdala activated during 
implicit evaluations, suggesting that emotional intensity influenced subconscious trust decisions. 
Operators with a positive implicit bias often over-relied on automation, bypassing critical 
verification steps. In contrast, those with negative biases performed redundant manual checks, 
which slowed decision-making.  Crucially, within the domain of human-robot interaction, the 
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implicit measure of attitude towards robots has shown to be an effective predictor of future 
behavior towards a robot (Spatola & Wudarczyk, 2021). 

The interaction between implicit and explicit attitudes complicates the trust-dependence 
relationship. People’s explicit attitudes frequently suggested positive attitudes toward robots, 
implicit measures uncovered more negative associations (Spatola & Wudarczyk, 2021). This 
discrepancy between conscious beliefs and subconscious perceptions sometimes led to 
hesitation, inconsistent reliance behaviors, or trust asymmetries in operational settings. 
Addressing these gaps requires automation systems capable of providing real-time, context-
sensitive feedback that aligns with both conscious expectations and subconscious perceptions. 
For example, adaptive transparency mechanisms that tailor information delivery based on real-
time user engagement could help reconcile these conflicts, promoting consistent reliance 
patterns. 

Reliance Action 

 Ultimately in Lee and See’s (2004) model, users decided whether to rely on automation 
based on their level of trust and the demands of the situation. Factors like workload, time 
pressure, and perceived risk all played a role in shaping these decisions. When trust was high, 
users tended to rely on automation more frequently, sometimes to the point of reduced 
oversight. When trust was low or uncertain, they were more likely to fall back on manual control, 
even if automation could have handled the task more efficiently. These patterns of reliance 
evolved over time, shaped by ongoing feedback from the system and the user’s experiences 
with its performance (Lee & See, 2004).   

However, the model did not discuss the relationship between the person and the 
automation.  Task interdependence defined how much, and the type of work, required from both 
the human and automation (Zhao et al, 2020).  Task interdependence plays a pivotal role in 
shaping trust dynamics within human-automation teams.  Within Lee and See’s (2004) model, 
task interdependence would be classified as an organizational or environmental context that fed 
into the Reliance Action box.   

Task Interdependence 

At its core, task interdependence refers to the degree to which the actions of one team 
member—whether human or automated—affect the outcomes of others. High levels of 
reciprocal task interdependence, where human and automated agents rely on each other’s 
actions for successful task completion, fostered higher levels of trust and reduced operator 
stress (Zhao et al., 2020).  Furthermore, Verhagen et al. (2022) showed that trust in human-
robot teams was influenced by the type of communication employed by the robotic teammate. 
Specifically, explainable transparency provided insights into the rationale behind automation 
decisions, which reduced uncertainty and increased trust in those interdependent tasks. 
Conversely, in scenarios with lower interdependence, concise and transparent interactions are 
more beneficial, preventing information overload and maintaining efficiency.  This dynamic is 
essential according to Lee and See’s (2004) performance-based trust framework, where trust 
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develops as automation systems consistently demonstrate reliability in these interdependent 
tasks 

  The perception of automation as a genuine team member also influenced trust levels, 
particularly in high-interdependence scenarios. O’Neill et al. (2022) stressed that human–
autonomy teaming required autonomous systems to exhibit behaviors that signal competence, 
reliability, and shared intent. In situations of high interdependence, autonomous agents 
perceived as possessing higher levels of agency fostered stronger trust relationships, as they 
are viewed as collaborators rather than mere tools. Automation was more likely to be trusted if it 
communicated its decision-making processes transparently and aligned its actions with the 
team's objectives.  

  High levels of task interdependence between a person and a robot can amplify trust 
asymmetries, leading to either an over-reliance or underutilization on automation. Over-reliance 
occurred when operators trusted automation excessively and overlooked critical errors, whereas 
underutilization stemmed from a lack of confidence in the system’s capabilities (Gans & Rogers, 
2021). In cooperative multirobot systems, where people relied on multiple autonomous robots, 
effective systems extended to include distributed autonomous robots, where decisions were 
made collectively across multiple automated units.  Over time, people developed confidence in 
the team’s decision-making capabilities through consistent performance and transparent 
communication (Gans & Rogers, 2021).  Predicting these trust asymmetries to dynamically 
create the right level of interdependence based on the task and environment would ensure that 
human-automation networks function cohesively in risk-intensive battlefield scenarios. 

  Task interdependence also intersects with both learned and situational trust.  Trust 
calibration in interdependent tasks was influenced by the historical performance of automation 
systems. Prior successes reinforce trust, while past failures necessitated greater transparency 
and explainability to rebuild confidence (Hoff & Bashir, 2015).  Situational trust fluctuated based 
on contextual factors, which showed situational trust to be sensitive to the nature of task 
interdependence (Hoff & Bashir, 2015). In high-interdependence scenarios, trust was 
dynamically calibrated, while automation systems provided adaptive transparency that adjusted 
to evolving mission requirements. Conversely, in low-interdependence scenarios, streamlined 
communications sufficed, preserving cognitive bandwidth if the user needed to execute any 
possible emergent task (Zhao et al., 2020; Verhagen et al., 2022). 

  In conclusion, task interdependence significantly shaped trust dynamics in human-
automation teams. Empirical studies supported that adaptive levels of task interdependence and 
specific communication strategies enabled human operators to see their automation as robotic 
teammates, rather than solely tools to be used.  The incorporation into being a teammate 
facilitated learned trust and improved human-automation collaboration in those teams. 

Automation 

The Lee and See (2004) model captured the effect of the automation itself through its 
performance, depicted in the model as an Attributional Abstraction under the information about 
the automation.  The performance references the automation’s reliability, or producing accurate 
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outputs and responding appropriately to minimize system errors (Lee & See, 2004).  When 
automation operated reliably people developed trust in the system. However, if the system was 
unpredictable, trust eroded, often leading users to eventually disengage from the automation.   
 Though the model discusses reliability and how crucial it was for user trust, it did not 
visually depict reliability as a key driver.  Highly reliable systems created trust, decreased 
people’s workload, increased efficiency, and increased performance (Onnash et al., 2015; Djuric 
et al., 2016; Chen et al., 2018).  Also, the model did not precisely include and demonstrate the 
role that transparency has on trust.  Explainable transparency, defined as giving a reasoned 
explanation for why it chose an action or is giving a certain recommendation, has shown to 
increase trust without impacting a person’s subjective workload (Djuric et al., 2016; O’Neill et al., 
2022; Verhagen et al., 2021),  The reliability and transparency concepts would be drivers 
leading to the Automation box in Lee and See’s (2004) trust model as depicted in Figure 4.  

Automation Reliability 

Automation reliability was thought to be the most important driver of a person’s trust in 
automation.  Meaning that when automation operated as expected on simple tasks, people 
trusted the automation’s capabilities more, which encouraged operators to depend on it for more 
complex tasks (Dixon et al., 2007; Hutchinson et al., 2023; Lee & See, 2004). Yet, this trust 
between operator and automation remained delicate. Even minor discrepancies, such as 
unexpected behavior or inconsistent performance eroded trust, which compelled operators to 
reassert manual control and increased their cognitive workload (Endsley & Kiris, 1995). Eroded 
trust and unnecessarily increased cognitive workload in high risk environments was a potentially 
dangerous combination.  A person’s cognitive resources and oversight should be reserved for 
conditions that may determine mission success or failure (van de Merwe et al., 2024). 

An operator’s expectations of automation largely depended on its history of reliable 
performance. When automation consistently meets the expectations of the operator, trust 
strengthens; however, a single failure can destabilize trust (Endsley, 2017). Different degrees of 
automation reliability exerted varied effects on operator trust. Low reliability, typically around 
60%, led to swift distrust, driving operators to default to manual control (Chavaillaz et al., 2016).   
Moderate reliability, typically seen between 70% and 80%, presented more nuanced challenges 
- while it fostered some trust, minor errors generated inconsistent reliance (Onnash, 2015; 
Guznov et al., 2020). Consistently high reliability, typically at 80% or above, fostered stable trust 
(Onnasch, 2015). In manufacturing, collaborative robots that performed reliably enabled workers 
to reduce both physical and cognitive workload, ultimately increasing productivity (Djuric et al., 
2016). Likewise, in simulated military operations, dependable automation provided accurate and 
timely decision-making support, alleviated cognitive overload, and improved mission 
performance (Chen et al., 2018). 

Yet, this same high reliability that increased performance also fostered complacency in 
people, as they became over-reliant on automation (Selkowitz et al., 2017).  Users relied too 
heavily on automation and failed to monitor system outputs effectively, assuming that the 
technology would operate flawlessly (Parasuraman & Manzey, 2010). People with high 
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autonomous systems tended to disengage from monitoring tasks, which increased errors when 
automation encountered unexpected situations (Gutzwiller et al., 2019).  To fight against this 
complacency, adaptive systems incorporated periodic user-engagement prompts designed to 
sustain operator vigilance and prevent skill atrophy (Bhaskara et al., 2021; Stowers et al., 2021). 

Automation complacency also impaired performance in collaborative, high-stakes 
environments.  In military applications, for example, people working alongside autonomous 
systems exhibited reduced engagement over time, and deferred critical judgment to the system 
even when errors were evident (Endsley & Kaber, 1999). Similarly, in autonomous vehicle 
research, drivers reacted slower to system failures when they relied excessively on driver-
assistance systems (Carsten & Martens, 2019). These findings reinforced the importance of 
designing automation with appropriate trust regulation strategies, such as real-time feedback, 
system transparency, and adaptive autonomy, to mitigate the risks associated with automation 
complacency. 

Automation Transparency  

Trust in automation doesn’t hinge solely on performance and the automation’s reliability.  
Transparency communicated the intent, performance, future plans, and reasoning process to 
the user in a clear and understandable presentation (Chen et al., 2014).  Transparent 
explanations from the automation enhanced trust by aligning operators’ expectations with 
system capabilities.  For example, Mercado et al. (2016) demonstrated explainable 
transparency to users forced to decide a tactical plan based on an integrated graphic with 
potential obstacles based on equipment capabilities, text explaining how the plan met the intent 
of the mission, and uncertainty information.  Explainable transparency helped users understand 
the purpose of the automation, what it was attempting to accomplish, and potential uncertainty 
in the decision.  Also, when systems emphasized their limitations, they can soften the blow of 
reliability failures.  For instance,  if a system makes an error but explains why it happened and 
what’s being done to fix it, operators are more likely to give it another chance (Van de Merwe et 
al., 2024). 
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Figure 2.  A model of transparency from Chen et al. (2014)  based on the purpose, process, and 
projection framework provided by Lee and See (2004).  The level of transparency increased as 
the automation explained what it was doing, why it was doing it with further details to the user 
on its reasoning, and provided future projections.    

As seen above in Figure 2,  Chen et al. (2014) parsed transparency into three levels 
based on Lee and See’s (2004) model: (1) purpose, where the automation communicated its 
purpose; (2) reasoning process, which detailed why the automation was making decisions; (3) 
projection to future state, which communicated what potentially could happen. Van de Merwe et 
al.’s (2024) meta-analysis reinforced that adaptive transparency proved beneficial in low-
workload conditions, while targeted information prevented cognitive overload in users.  When 
explainable transparency was integrated into system designs, cognitive workload decreased by 
streamlining information processing and minimizing the need for manual verification (Mercado et 
al., 2016; Selkowitz et al., 2015; Chen et al., 2018).  

Transparency is a multifaceted construct, representing the extent to which an automated 
system communicates its processes, reasoning, and limitations to the user. Transparency 
allows operators to understand not only what a system is doing but also why it is performing 
specific actions (Verhagen et al., 2022). This transparency is especially critical in military 
environments, where context changes quickly and is best understood by the commander on the 
ground. However, transparency exists on a spectrum, ranging from basic transparency to 
explainable transparency.  Basic transparency is where a display provides all the data to the 
user for them to interpret system outputs; whereas, in explainable transparency, the automation 
provides analyzed data, a recommendation, and reasoning for that recommendation. As 
Verhagen et al. (2022) noted, explainable transparency helps users interpret a system’s 
behavior, predict its actions, and maintain trust in the robotic teammate.  

  Explainable transparency can reduce the cognitive burden associated with decision 
verification in high risk scenarios. Unlike basic transparency, which presents surface-level 
outputs, explainable transparency provides detailed insights into the confidence and reasoning 
behind the automation’s decision (Loft et al., 2023; Verhagen et al., 2021; Bashkara et al., 
2021). Explainable transparency involved a step-by-step breakdown of target identification 
decisions, associated risk levels, and contingency plans in response to potential enemy actions. 
Such comprehensive explanations empowered users to balance their trust in the automation 
with the risk of the situation, similar to what a soldier might have to do (Loft et al., 2023). These 
adaptive transparency models are needed to best support the user - they tailor the information 
based on the environment, risk, and the commander’s workload at the time. Embedded 
explainable transparency reconnaissance systems would ensure that commanders can assess 
mission risk without incurring excessive cognitive workload.   

Verhagen et al. (2022) demonstrated that explainable communication significantly 
improved trust in highly interdependent tasks.  Explainable transparency ensured that the entire 
team understood the rationale behind decisions, and therefore fostered coordinated action. This 
capability was particularly critical in cooperative multirobot systems, where distributed decision-
making requires a shared mental model to ensure operational cohesion (Lyons & Stokes, 2012). 



INTEGRATIVE REVIEW OF TRUST IN AUTOMATION                                             14 

Explainable transparency facilitated this shared understanding and supported trust distribution 
across multiple automated agents.  Also, the automation’s reasoned explanations increased 
user’s performance on the task without impacting their subjective workload (Mercado et al., 
2016; Chen et al., 2018).  The presented information helped the user without any discernible 
performance downside. 

  Ultimately, explainable transparency provided the right information in the right format 
that matched the demands of the environment. In low-risk scenarios, minimal transparency may 
have allowed operators to focus on broader mission objectives; however, people in high-risk 
scenarios wanted detailed explanations that allow them to double check decisions without 
compromising decision timelines (Mercado et al., 2016). Future research should explore how 
machine learning algorithms could predict what information military commanders would need in 
real-time.  Having systems capable of providing the right amount of explainable transparency at 
the right time would foster trust and improve operational outcomes in the military. 

Display 

Lee and See (2004) discussed the impacts of information presentation on how users 
perceived and trusted automation.  A well-designed display helped users understand system 
capabilities by providing new information, relevant feedback about past performance, and 
overall reliability.  Trust suffered if these were poorly communicated, leading to either over-
reliance or unnecessary skepticism (Lee & See, 2004). The best displays balanced abstraction 
with detail, giving users enough information to make informed decisions without overwhelming 
them. 

While the presentation of information is important, the model did not take into account 
the emotional expressions of the automation and if it had anthropomorphic qualities.  People 
performed best when executing complex tasks with highly anthropomorphic robots (Hinds et al., 
2004) and military personnel demonstrated greater trust when robots’ physical actions appeared 
purposeful and communicated emotional context clues (Cappuccio et al., 2021).  Lee and See’s 
trust model did not represent these drivers well, but both emotional expressions and 
anthropomorphism would appear as influencing the Display box (shown in Figure 4).        

Emotional Expressions 

Although not explored as often as transparency or reliability within automation research,  
emotional expressiveness has demonstrated a profound influence. Emotionally expressive 
robots facilitated greater trust and reliance, particularly in high-risk decision-making 
environments where human and automated recommendations conflict (Feng et al., 2019). 
Emotional expressions provided participants social cues that helped them interpret the 
intentions, reliability, and urgency of the automation.  Research has shown that these cues, 
given in conjunction with the recommendation itself, supported more effective trust calibration 
between the two. Ho et al. (2017) highlighted the impacts of personal experiences, culture, and 
contextual risk.  They found that while pilots initially hesitated, trust in the automation increased 
over time as the system demonstrated reliability and effectiveness in high-risk scenarios. This 
study showed that emotional expressiveness—whether from human operators or integrated into 
automation—accelerated trust calibration when aligned with real-world operational demands.  
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  Robots with explainable transparency using emotional expressiveness when 
communicating enhanced trust with its human partner. Feng et al. (2019) suggested that 
emotional cues provided contextual signals that complement transparency by indicating 
confidence levels, operational urgency, or system uncertainty. For example, in potential combat 
operations, an automated system explaining its targeting process while simultaneously 
expressing appropriate levels of urgency in its recommendations more effectively earned 
people’s trust. This combination of logical explanations and affective assurances ensures that 
operators are better equipped to interpret and rely on automation decisions (Ho et al., 2017; 
Feng et al., 2019). It also highlighted the importance of dynamic emotional adaptation in future 
robotic teammates, where systems modulate emotional expressiveness based on risk levels, 
task complexity, and operator workload. Over time, the role of emotional cues diminished, giving 
way to performance-based trust (Ho et al., 2017).  In military settings, where uncertainty and 
time-sensitive decisions are prevalent, integrating emotional expressiveness into both human-
agent communication and automation interfaces may help regulate trust dynamics, ensuring 
neither over-reliance nor undue skepticism occurs. 

Anthropomorphism   
Integrating emotional expressiveness into human-automation interaction models offered 

a promising avenue for anthropomorphic robots.  Designers manipulated these physical 
attributes to make robots more or less human-like, or in some cases, to make a robot look like a 
real dog. Anthropomorphism, however, was a double-edged sword—while complex 
collaborative tasks were performed more efficiently with highly anthropomorphic robots, robots 
that appeared too human-like triggered the uncanny valley phenomenon (Hinds et al., 2004; 
Mori et al., 2012; Kim et al., 2022). The uncanny valley referred to the discomfort or distrust 
users felt when robots appear too human-like.  Therefore, creating a design with the right level 
of anthropomorphism posed a critical challenge for robotic designers.  Designers wanted 
soldiers to trust and feel comfortable with their automation.  Boston Dynamics sought to avoid 
the uncanny valley problem by creating an animaloid robot which roughly resembled a dog.  For 
example, Spot’s dog-like form (seen in Figure 3) may have engendered trust from its human 
operator, and allowed operators to intuitively gauge its reconnaissance capabilities.  
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Figure 3.  Boston Dynamics’ Spot the robot dog resembled the overall look and movement of a 
physical dog.  Spot’s abilities were highly customizable based on the mission assigned. Spot 
conducted physical or map reconnaissance (Vom Hofe et al., 2023), conducted RADAR 
operations (Wetzel et al., 2022), or be affixed with tools like an external arm (Zimmerman et al., 
2021). 

However, if the robot’s movements or behaviors were too lifelike without matching cognitive 
functions, it could trigger unease, undermining trust. MacDorman et al. (2009) emphasized that 
such aesthetic-functional mismatches impact both explicit and implicit attitudes.  Crucially, these 
attitudes potentially impacted users’ trust in the automation as well their future behavior with the 
robot (Spatola & Wudarczyk, 2021). 

Military robots required simple, socially interactive features that aligned with their 
functional roles (Cappuccio et al., 2021; Djuric et al., 2016). For example, a robot like Spot, 
designed for reconnaissance missions, leveraged dog-like physical attributes that influence how 
users perceive its capabilities. These physical cues prompted assumptions about the robot’s 
agility, sensor capabilities, and operational reliability. However, these assumptions may not 
always reflect the robot’s actual functionality, leading to over-reliance based on misperceptions. 
The form-function attribution bias described by Haring et al. (2018) illustrated this issue, where 
operators incorrectly inferred advanced competencies based solely on appearance. Thus, 
robotic form should clearly showcase its functionality, ensuring that trust levels are appropriately 
calibrated and aligned with actual system performance. 

Robotic teammates with an appropriate level of anthropomorphic features have shown to 
be especially effective on human-automation teams executing highly interdependent tasks. 
Human-likeness and physical embodiment in automation systems can enhance trust, 
particularly in high-pressure environments where rapid trust calibration is essential (Haring et 
al., 2021). In high-interdependence military tasks, where coordinated action is essential, 
moderate anthropomorphic cues fostered trust and effective collaboration. However, Rovira et 
al. (2024) cautioned that individual differences in pre-existing attitudes toward robots can either 
amplify or diminish the positive effects of anthropomorphism. Operators with negative 
predispositions may exhibit lower trust levels despite functional reliability, whereas those with 
positive biases may over-rely, even when system performance does not warrant it. These 
dynamics underscored the need for customizable anthropomorphic features, allowing operators 
to adjust robotic behaviors and appearances according to personal comfort levels and 
operational requirements. 

  In conclusion, anthropomorphism and emotional expressiveness represent a component 
of trust adaptation in human-automation teams. When combined with explainable transparency 
and adaptive communication strategies, these offer a more holistic approach to fostering robust 
trust dynamics capable of withstanding the complexities of modern military operations. 

Revised Theory of Trust 

 Since the initial trust theory was published, empirical research has continued to define 
and refine its constructs.  As such, some of the drivers of trust calibration discussed above were 
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not explicitly mentioned by Lee and See (2004).  Based on the literature reviewed previously, 
there are some important characteristics of both the form and function of automation that govern 
a person’s trust.  Below in Figure 4 is an updated version of the original model with additional 
inputs added to the Information assimilation and belief formation, Reliance, Automation, and 
Display boxes of the flowchart.  A greater understanding of the person (attitudes, attentional 
control), the task (task interdependence), how the automation works (reliability, transparency), 
and how it looks and communicates (emotional expressions, anthropomorphism) will refine our 
trust framework across all fields of study. 

 Eventually, robots will conceptually change from just a tool to be used towards being a 
robotic teammate that helps accomplish the mission.  As they make this transformation, the 
points of interaction between the robotic teammate and the human operator becomes that much 
more important.  Creating the right robot that soldiers would embrace within their formation and 
trust on the battlefield through how it looks, acts, and communicates gives our military a 
significant advantage.  Additionally, the ability to dynamically govern task interdependence and 
explainable transparency enables the automation to understand the environmental context and 
best support a military commander on the ground.  

 

Figure 4.  A revised version of Lee & See’s (2004) conceptual model of the dynamic process 
that governs trust.  The additional drivers of trust have been added throughout the model, in line 
with how they impact the human or the automation.   
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Dependence: A Critical Gap in the Literature 

Despite substantial research on trust in human-automation interactions, a notable gap 
remained in understanding automation dependence. Automation dependence was not a direct 
output from trust, instead it was a specific behavior shaped by the situation, environmental 
demands, and perceived system performance (Parasuraman & Riley, 1997). To fully grasp how 
reliance on automation influenced mission success and operator efficiency, it was essential to 
explore this nuanced relationship. 

Automation Dependence 

Dependence was a behavioral measure used to assess how often individuals utilized 
automation when it was available. For alerting systems or diagnostic tools, dependence was 
often broken down into reliance and compliance (Meyer, 2004). Reliance occurred when a 
person accepted an "all is well" signal from the automation.  This behavior was influenced by 
automation; when the system failed to signal real issues, operators tended to rely on it less 
(Dixon et al., 2007). Reliance was also closely linked to complacency, which happened when an 
operator over-relied on the automation (Parasuraman & Manzey, 2010). Compliance, on the 
other hand, referred to when an operator followed an alert from the automation, even if the alert 
did not match the true state of the situation. Compliance generally decreased with false alarm-
prone automation, as frequent inaccurate alerts caused operators to delay their responses or 
ignore alerts altogether. Dependence also applied to non-alerting systems, where it was 
measured by how often the system was used (Meyer, 2004). 

Automation dependence and trust were intuitively related, but not the same thing.  In a 
recent metaanalysis, trust and dependence only had a correlation of r = .13 (Patton & Wickens, 
2024). While trust determined whether an operator was willing to rely on automation, 
dependence reflected actual reliance behavior, which did not always align with trust levels 
(Dzindolet et al., 2003). As covered previously, over-dependence led to automation bias, where 
users blindly trusted the automation, potentially missing crucial errors. Conversely, under-
dependence forced operators to assume excessive manual tasks, resulting in cognitive overload 
and an inefficient use of the automation (Parasuraman & Riley, 1997). Perhaps these 
automation systems were not able to dynamically adapt to the changing environment or they 
were unable to communicate to the human operator. 

Situational factors such as workload, risk perception, and time constraints played 
significant roles in shaping automation dependence. Parasuraman et al. (2000) observed that 
during high-workload scenarios, operators were inclined to delegate decisions to automation 
without thorough validation, risking over-reliance. In high-risk conditions, even highly reliable 
systems were underutilized as operators became overly cautious, fearing potential failures 
which led to consistently verifying the automation’s decision (Bashkara et al., 2021; Muir & 
Moray, 1996). These clearly show a need for adaptive transparency and context-aware 
explainability, so operators could assess the trustworthiness of automated systems in real-time.  
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Task interdependence also influenced automation dependence. In cooperative 
multirobot systems, operators needed to trust not only individual robots but also the collective 
decision-making of distributed networks (Gans & Rogers, 2021). In these cooperative tasks, the 
level of interdependence was crucial. In highly interdependent tasks, operators were more likely 
to rely on automation—provided the system had demonstrated consistent performance and 
communicated decision-making processes clearly (Zhao et al., 2020). However, a single failure 
within a multirobot system diminished trust in the entire network, resulting in widespread under-
dependence (Riley, 1995). Based on these, the incorporation of dynamic explainable 
transparency mechanisms to explain why automation teammates made their decision would 
restore trust while maintaining the required operational tempo. 

Ongoing research must investigate how machine learning algorithms can predict 
dependence patterns in real time, enabling automated systems to adjust transparency levels 
and operational autonomy accordingly (Parasuraman & Riley, 1997; Madhavan & Wiegmann, 
2007).  As robotic teammates gain technological capabilities and are mass fielded in the Army, 
research will continue to bridge the gap between the attitude that is trust and the behavior that 
dependence represents.   

Measures of Automation Dependence 

Accurately measuring trust in automation and dependence behaviors remained essential 
for understanding how human-automation teams operate. Trust was “the attitude that an agent 
will help achieve an individual’s goals in a situation characterized by uncertainty and 
vulnerability” (Lee & See, 2004). Dependence, in contrast, referred to the actual behavioral 
reliance demonstrated during interactions with automation.  It included reliance and compliance 
(Meyer, 2004). Therefore, when compared to self-report measures, behaviorally based 
measures provided clearer insights on how people depended on automation. 

Self-report surveys and Likert-scale questionnaires served as foundational tools for 
assessing trust attitudes. Instruments such as the Trust in Automation Scale (Jian et al., 2000) 
remained widely adopted due to their simplicity and ease of use. Studies relied on self-report 
methods to gauge participants' perceived trust levels after interacting with automated systems. 
These measures provided direct insights into users’ subjective trust evaluations and can be 
administered repeatedly to track trust development over time. However, trust is dynamic and 
changes across time (Yang et al., 2021), but since these self-report measures typically 
represent a single moment in time, they were unable to capture real-time trust fluctuations 
during the mission.  Holistically, these self-report surveys measured peoples intent to rely - or 
intent to depend - rather than dependence behaviors.  Given the weak correlation between trust 
and dependence (Patton & Wickens, 2024), there was a gap not addressed by the majority of 
empirical literature. 

Behavioral measures offered a more objective assessment of dependence by tracking 
how users interacted with automation and incorporated both behavioral and physiological 
measures. Metrics such as frequency of system use, override rates, and response times  
indicated when and the extent to which operators rely on automated systems.  Override rates, 
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communication patterns between the user and the automation, and reliance on the automation’s 
suggestions all provide specific information on the interaction between the person and the 
automation (Pak et al., 2012; Zhao et al., 2020; Verhagen et al., 2022).  For instance, Pak et al. 
(2012) investigated checking raw data as an opposite behavior to compliance, and reinforced 
the idea that automation dependence varied based on user trust and confidence in system 
accuracy.  Additionally, eye-tracking metrics such as fixation frequency and duration were used 
to infer dependence, with more frequent glances at automation being interpreted as lower 
dependence. For instance, Dixon et al. (2007) found that automation with frequent misses led to 
more operator glances at the automated task, suggesting decreased reliance.  These measures 
reflected actual user behaviors while using the automation, minimizing self-report biases or 
people guessing their own intent to rely on the automation.  

Interpreting these dependence behaviors was not always straightforward. High usage 
rates might have suggested an appropriate level of reliance or, conversely, it might have meant 
complacency and over-dependence. Similarly, frequent overrides may have indicated healthy 
skepticism or a lack of trust that undermines performance. The context of the task, associated 
risks, and operator workload were all considered when interpreting behavioral data 
(Parasuraman & Riley, 1997.  So, despite the variety of available measures, no single approach 
comprehensively captured the multifaceted nature of trust and dependence. 

Conclusion and Way Forward 

Trust in automation is not a fixed state, rather it shifts and evolves based on experience, 
context, and system performance. In military operations, where the stakes are high, trust must 
be carefully calibrated. Operators need confidence that automation will perform reliably, make 
sound decisions, and ultimately enhance mission effectiveness rather than complicate it. But 
trust isn’t just about reliability; it’s shaped by transparency, emotional expressiveness, and the 
level of interdependence between human and machine. Robotic teammates must do more than 
function correctly—they must communicate their reasoning, adapt to changing conditions, and 
earn their place within a team. As automation grows more advanced, its ability to provide clear 
explanations, adjust to operator needs, and align with mission goals will be crucial for fostering 
lasting trust. 

Looking ahead, the challenge with trust is ensuring that trust leads to appropriate 
reliance. Trust is an attitude, but dependence is a behavior, and the two rarely match up. In 
high-risk, high-pressure environments, operators may either lean too heavily on automation or 
hesitate to use it at all, both of which can undermine performance. To bridge this gap, future 
systems must recognize when and how operators are relying on them through experiments with 
increased ecological validity.  Within these scenarios, people would make situational 
judgements based on an autonomous teammate’s recommendation (Manniste et al., 2019); this 
would provide clear insights on how users would depend on automation. As these technologies 
become more embedded in military operations, ongoing research must explore how to 
establish, maintain, and rebuild trust when failures occur. The goal is not just to create 
functional automation, but to build systems that soldiers trust, depend on, and ultimately see as 
partners in mission success. 
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